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Abstract—With the emergence of high-performance computing
instances in the cloud, massive scale computations have become
available to technically every organization. Digital libraries
typically employ a data-intensive infrastructure, but given the
resources, advanced services based on data and text mining could
be developed. A fundamental issue is the ease of development and
integration of such services. We demonstrate the feasibility by
providing a case study on a visual machine learning algorithm
with MapReduce running in the cloud in a small cluster.

Index Terms—Digital Libraries, Topic Modelling, Self-
organizing Maps, High-performance Computing, Cloud Comput-
ing, MapReduce

I. INTRODUCTION

High-performance computing (HPC) traditionally relied on
supercomputers and computer clusters to solve advanced
computational problems. Since even commodity hardware is
extremely powerful these days, enormous clusters of commod-
ity computers have been overtaking supercomputers in the
rankings of computational performance for the past decade.
Realizing the potential of dynamically provisioned instances
for high-performance computing, several cloud providers
launched special cluster instances for scientific purposes. Thus,
in a perfectly democratic manner, every individual and orga-
nization may perform very large scale computations. Applica-
tions in astronomy, drug research, and machine learning are
the most obvious candidates to benefit from the paradigm shift.
With easily provisioned resources, HPC is also beginning to
find its way to organizations that did not consider it yet in
daily operations. Examples include digital preservation and
digital libraries. In what follows, we focus on the latter: we
are primarily interested in how we can use cloud-based HPC
in digital libraries.

Data mining processes typically include supervised learning
such as classification (predicting if a given document is a
member of a particular class), unsupervised learning such as
clustering (grouping together similar documents), and associa-
tion rule mining (discovering rules that interrelate documents
or terms within those documents). Especially if considering
their extreme usefulness, with a few notable exceptions [5],
[2], taking advantage of the general techniques within dig-
ital library services does not appear to be widespread. The

situation is similar in text mining processes within digital
libraries, with very few examples of fully integrated services
and workflows [21].

The computational expense to execute data or text mining
based analysis has been identified as the major cause for
the lack of more widespread use of such mining processes
[17]. Only a very few natural language processing systems
are available for general use, being sufficiently fast in serial
mode to cope with even medium scale digital libraries without
distributed computing. Further, the most advantageous method
of integration into document processing workflows is often not
obvious. To overcome this obstacle, [17] proposed that while
the data grid integration is very important for dramatically
increasing the scalability of digital library and preservation
systems, the actual utility stems from the added integration of
computationally expensive processing, extending the informa-
tion available for discovery, analysis, and potential reuse.

In this paper, taking the above as our starting point, and
to demonstrate the feasibility and ease of development of
additional, compute-bound services to digital services. We use
a small, cloud-based HPC cluster and an efficient MapReduce
framework.

II. COMPUTATIONAL PROBLEMS IN DIGITAL LIBRARIES

To demonstrate the scale of computational problems that
might be encountered in advanced services provided by digital
libraries, we briefly discuss a visual data analysis tool called
self-organizing maps in Subsection II-A. This tool works well
both in terms of computational efficiency and the quality of
results if the data set does not have an exceedingly high
number of dimensions. Since textual data is typically mapped
to a very high dimensional space, we discuss topic modelling
methods that reduce the dimensions to 200-300 in Subsection
II-B.

A. Visualization

The self-organizing map (SOM) training algorithm con-
structs a nonlinear and topology preserving mapping of the
input data set X = {x(t)|t ∈ T}, where T is a finite
set, onto a set of neurons M = n1, . . . , nk of a neural



network with associated weight vectors W = w1(t), ..., wk(t)
[10] at a given time step t. Each data point xi is mapped
to its best match neuron bm(xi) = nb ∈ M such that
d(x,wb(t)) ≤ d(x,wj(t)) ∀wj(t) ∈ W , where d is the
distance on the data set. The neurons are arranged on a
two dimensional map: each neuron i possesses a set of two
coordinates embedded in a two dimensional surface. Next the
weight vector of the best match neuron and its neighbours are
adjusted toward the input pattern using the following equation:

wj(t+ 1) = wj(t) + αhbj(t)[x(t)− wj(t)],

where 0 < α < 1 is the learning factor, and hck(t) is the
neighbourhood function that decreases for neurons further
away from the best match neuron in grid coordinates. A
frequently used neighbourhood function is the Gaussian:

hbj = exp(
−||rb − rj ||

δ(t)
),

where rk and rc stand for the coordinates of the respective
nodes. The width δ(t) decreases from iteration to iteration
to narrow the area of influence. It is assumed, that the SOM
gives a mapping with minimal, or at least tolerable, topological
errors [9].

In a batch formulation of SOM training, the weight vectors
are only updated all at once by the end of a learning period
after seeing the complete set of training vectors. The new
weights are calculated according to:

wj(tf ) =

∑tf
t′=t0

hbj(t
′)x(t′)∑tf

t′=t0
hbj(t′)

, (1)

where t0 and tf are the beginning and the end of the current
epoch.

B. Topic Modelling
The major approaches to automatic topic modelling are able

to identify the hidden variables that can be interpreted as
‘topics’. Unfortunately, it is impossible to single out a topic
modelling approach that would work best in all scenarios.
Latent semantic analysis [4] and random indexing [8] are two
popular approaches.

Latent semantic indexing measures semantic information
through co-occurrence analysis in the corpus. In latent seman-
tic indexing, the dimension of the vector space is reduced by
singular value decomposition [4]. The singular values of A are
gained by the eigen base of A:

〈Aui, Auj〉 =

{
σ2
i if i = j

0 if i 6= j

The σi values are the singular values. Let U denote the set of
ui vectors, this is the (left-hand side) eigen base of A. Let vi =
Aui/σi (i = 1, 2, . . . , r), where A∗ is the adjoint of A and r is
the rank of A. Let Σ denote a rectangular matrix, its diagonal
consisting of the singular values, the other elements are zero.
By the orthogonality of U and V , the following decomposition
is derived:

A = (UU∗)A = (u1u
∗
1 + u2u

∗
2 + · · ·+ uru

∗
r)A =

σ1u1v
∗
1 + σ2u2v

∗
2 + · · ·+ σrurv

∗
r = UΣV ∗.

The above formula is the singular value decomposition of the
matrix A. Let Σk denote that matrix which is similar to Σ,
but it has only the k highest singular values in its diagonal.
Then

Ak = UkΣkV
∗
k . (2)

Ak is the best approximation to A for any unitarily invariant
norm [1], [13], hence Ak is the closest rank k matrix to A in
the sense of the least squares’ method as well.

Random indexing does not rely on the use of computa-
tionally intensive matrix decomposition algorithms like sin-
gular value decomposition. This makes random indexing a
much more scalable technique in practice. Instead of first
constructing a huge co-occurrence matrix and then use a
separate dimension reduction phase, random indexing builds
an incremental word space model [8], [16]. The random
indexing technique can be described as a two-step operation:
• First, each context (e.g. each document or each word)

in the data is assigned a unique and randomly generated
representation called an index vector. These index vectors
are sparse, high-dimensional, and ternary, which means
that their dimensionality (d) is on the order of thousands,
and that they consist of a small number of randomly
distributed +1s and -1s, with the rest of the elements of
the vectors set to 0.

• Then, context vectors are produced by scanning through
the text, and each time a word occurs in a context (e.g.
in a document, or within a sliding context window),
that context’s d-dimensional index vector is added to
the context vector for the word in question. Words are
thus represented by d-dimensional context vectors that
are effectively the sum of the words’ contexts.

The Johnson-Lindenstrauss lemma states that if points in a
vector space are projected into a randomly selected subspace
of sufficiently high dimensionality, the distances between the
points are approximately preserved [7]. Thus, the dimension-
ality of a given matrix F can be reduced by multiplying it
with (or projecting it through) a random matrix R:

Fw×dRd×k = F ′w×k

If the random vectors in matrix R are orthogonal, then F =
F ′; if the random vectors are nearly orthogonal, then F ≈ F ′
in terms of the similarity of their rows. A very common choice
for matrix R is to use Gaussian distribution for the elements
of the random vectors.

The eventual number of dimensions, and thus topics, is
defined by k, and random projection does not provide an
explicit way of computing it, being a parameter of the model.

III. OPPORTUNITIES IN CLOUD-BASED
HIGH-PERFORMANCE COMPUTING

High-performance computing (HPC) uses supercomputers
and computer clusters to solve advanced computational prob-
lems. A supercomputer is purpose-built hardware which is



Language Distributed MapReduce
Hadoop Java Yes/Custom Pure
MR-MPI C/C++ Yes/MPI Mixed
Phoenix++ C++ No Pure

TABLE I
COMPARISON OF SOME OPEN SOURCE MAPREDUCE FRAMEWORKS

typically very costly to build. Clusters combine powerful
workstations or even commodity hardware through a high-
speed network to achieve higher scales. Since even commodity
hardware is extremely powerful these days, enormous clusters
have been overtaking supercomputers in the rankings of com-
putational performance for the past decade.

Amazon Web Services (AWS), realizing the potential of
dynamically provisioned instances for HPC, launched special
cluster instances for scientific computing. The architecture
of a cluster of such instances is identical of a smaller-scale
traditional cluster.

The computational expense to execute data or text mining
based analysis as advanced services in digital libraries has
been identified as the major cause for the lack of more
widespread use of such services [17]. Turning our attention
to cloud-based HPC, we are interested to see how we can
leverage on such technologies in digital libraries in a manner
that is sufficiently easy to deploy by developers.

HPC comes with its own parallel and distributed program-
ming paradigms that usually cater to a specific application
on a specific hardware configuration. While there is no clear
winner, the Message Passing Interface (MPI) is a fairly com-
mon API specification to exploit both intranode and internode
parallelization. For the easy deployment of useful services
in digital libraries, a higher level of abstraction is needed.
MapReduce is a good candidate [3], already used in many
text-related tasks such as inverted indexing [12]. MapReduce
is not a novel framework in distributed computing, drawing on
well-known principles in parallel and distributed computing,
and assembling them in a way to scale to collections of sizes
unseen before. MapReduce has been typically restricted to
data-intensive processing, whereas HPC is compute-bound.
More recently, however, there has been a few attempts to use
MapReduce for HPC.

MapReduce implementations are mushrooming and they
widely vary in what they are capable of. There are versions
even in Javascript1, in what follows we overview the ones
written in languages suitable for HPC. Table I gives a high-
level overview of the implementations.

The most notable implementation is probably Hadoop.
Hadoop in fact is more than just a MapReduce framework,
resulting from the tight integration of a distributed filesystem
(HDFS) and a MapReduce framework (Hadoop MapReduce).
It is the earliest fully functional open source implementation
of the original MapReduce paper published by Google [3].
The presence of a distributed filesystem in the package is not
accidental. Hadoop was conceived with hundreds of individual

1http://www.sevenforge.com/meguro

nodes in mind and real scalability shows only beyond a certain
number of nodes. To support this goal, the development of
a reliable distributed filesystem was a must for the project
to be successful. This alone would distinguish Hadoop from
the rest of the frameworks overviewed in this manuscript: the
other systems do not come with a distributed filesystem, and
even if they do operate in a distributed fashion, the speed-
up declines sharply after reaching 30-60 processing cores,
which translates to roughly 8-30 nodes, depending on the con-
figuration of individual nodes. Hadoop MapReduce launches
redundant jobs, the same chunk of data is distributed to at least
three nodes. A node may run multiple jobs simultaneously,
hence exploiting internal parallelism of multicore nodes. To
do so, Hadoop launches multiple Java virtual machines on
the node. While a solid solution, the computing efficiency
of such an architecture is dubious. This is the reason why
Hadoop emphasizes its focus on data-intensive computing,
that is, a large volume of data has to be processed reliably,
and the execution time is of secondary importance. Being
the most widespread framework, a variety of algorithms are
readily available for Hadoop. Mahout offers a limited number
of machine learning libraries [14].

A venerable MapReduce framework that uses the paral-
lelism of multi-core processors, but does not scale to mul-
tiple computers is Phoenix++ [20]. The great advantage of
Phoenix++ is that the code base has been rewritten for the
third time and it is both quite mature [15], [22] and ex-
tremely educational to develop MapReduce jobs with it. Since
Phoenix++ is not distributed, debugging is much simpler. Once
a MapReduce job takes shape and works with Phoenix++, it
can be adopted to other frameworks. Phoenix++ demonstrates
extremely well that the overhead of MapReduce might be quite
minimal. The authors compared it to other shared-memory
parallel programming libraries such as Pthreads and OpenMP,
and found Phoenix++ performing just as well. Phoenix++ is
well-suited for compute-intensive tasks which can be easily
formulated in pure MapReduce jobs.

Another fairly ‘thin’ implementation, MR-MPI2, was origi-
nally targeted at compute-bound biomedical applications. It is
similar to Phoenix++ in that it uses only the CPUs. However,
it uses MPI to exploit parallelism, and that also means that it
scales to multiple nodes. It is not a pure framework, it allows
certain types of communications via MPI which violate the
strict MapReduce principles.

IV. DISCUSSION OF RESULTS

A. A small cluster in the cloud

A Beowulf cluster is a computer cluster of what are nor-
mally identical, commodity-grade computers networked into a
small local area network with libraries and programs installed
which allow processing to be shared among them. A number
of identical EC2 instances can make up a Beowulf cluster34.

2http://www.sandia.gov/∼sjplimp/mapreduce.html
3http://www.datawrangling.com/on-demand-mpi-cluster-with-python-and-ec2-part-1-of-3
4http://aws.amazon.com/hpc-applications/



AWS has two fundamental kinds of instances: standard and
cluster instances. The difference is that the latter are meant
for HPC applications. It is ensured that cluster instances that
are launched simultaneously are physically close and they are
connected with a high-speed network, and, as a result, they
are more expensive than comparable standard instances. Ama-
zon EC2 offers two cluster instance types: cluster compute
instances and cluster GPU instances. These instance types
provide a very large amount of CPU, making them well
suited for HPC applications and other demanding network-
bound applications. The cluster instances can be launched
individually, but more often they are grouped into clusters
(known as cluster placement groups), allowing applications to
get the low-latency network performance required for tightly
coupled, node-to-node communication typical of many HPC
applications. A cluster compute instance in AWS has two Intel
Xeon X5570 quad-core CPUs and 23 GB of memory.

Cluster instances are different from standard instances as the
level of virtualization is also different. They run as Hardware
Virtual Machine (HVM)-based instances. HVM is a type of
virtualization that uses hardware-assist technology provided
by the AWS platform. HVM virtualization lets the guest VM
run as though it is on a native hardware platform with the
exception that it still uses paravirtual (PV) network and storage
drivers for improved performance.

AWS offers a fully configured Hadoop-based MapReduce
solution called Elastic MapReduce (EMR). The most funda-
mental difference of computing with EMR is that the level of
abstraction is one level higher. This manifests in a number of
characteristics:
• There is no need to configure individual instance images.
• Any type of EC2 instance can be chosen, not just cluster

instances.
• Network speed between instances is probably lower.
• Only Hadoop can be used for writing and executing

MapReduce jobs.
The key differences in operation are the following:
• Overall throughput is probably much lower, as Hadoop

is the slowest framework and the redundancy is very
high to ensure high reliability with normal (non-cluster)
instances.

• Operation and administration are easier.
• Flexibility is greatly reduced, as only Hadoop can be

used, and only in a pre-configured manner.
We therefore decided in favour of building a cluster from

the cluster instances with MPI and we did not use EMR.

B. Running time and cost

Our collection consists of 17th-century scientific correspon-
dence5. We are particularly interested in the development of
concepts, and therefore we work with the term space. In the
experiments, we have 66,144 terms, the dimensionality has
been reduced to 200 with both random indexing and latent

5http://ckcc.huygens.knaw.nl/

semantic analysis. The computational requirement of these
calculations does not ask for a cluster.

The computationally demanding part is the calculation of
the SOMs. Relying on the AWS cluster instances, we use
OpenMPI for distributing the load. We disable Hyperthreading,
as it appears to decrease performance.

MR-MPI already has an implementation of SOM [19]. This
implementation broadcasts the entire tensor of the SOM at the
beginning of every epoch, and then updates at the end of the
epoch according the batch formulation described in Equation
1. The broadcasting operation has a significant impact when
working in a distributed environment.

We extended the algorithm to efficiently use the sparse data
structures typical in text mining. Note that the weight vectors
in the SOM remain dense structures, as they are very unlikely
to contain any zero elements. Hence the description of a SOM
is essentially given by a dense tensor. This formulation is
similar to the one desribed in [11].

When using the term vectors gained by random indexing,
the total size of the SOM tensor is 50×50×200. With each of
the 66,144 terms adjusting the network in each iteration, the
resulting map is a fine-grained representation of the clustering
structure.

We use a slightly different formulation when using latent
semantic indexing. We use the 200 right singular vectors in
Equation 2, each of which being 66,144 dimensional. This
gives a broader overview of the clustering structure. The tensor
of the SOM will be much larger, 50× 50× 66, 144.
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Fig. 1. Running time of SOM

A single cluster instance contains eight physical cores. We
benchmark clusters of one, two, four, and eight instances. The
timings and speed-up are shown in Figures 1 and 2.

If SOM is based on the random indexed term vectors, the
speed-up is almost linear, since the communication overhead is
minimal. With 64 cores, the computation takes less than twenty
minutes, which approaches acceptable for practical usage.

The situation is different if the starting point is the matrix
of left singular vectors. Since the tensor to broadcast is of
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Language Distributed MapReduce
Mars C/C++ No Pure
GPMR C/C++ Yes/MPI Mixed

TABLE II
COMPARISON OF GPU-AWARE OPEN SOURCE MAPREDUCE FRAMEWORKS

considerable size, the scaling is well below linear. Although
the number of instances is two magnitudes smaller, the training
takes almost an hour even with 64 cores.

We use the AWS on-demand instances which let us pay for
compute capacity by the hour. A Linux cloud cluster instance
costs $1.60 per hour. Since the problem at hand is compute-
bound and the actual size of the data is fairly small, the transfer
costs were negligible (under a dollar). Either experiment
finishes under an hour on the largest clusters of eight instances,
costing $12.80. Fixing the dimensions of random indexing and
continuing with the same size of the neural network, further
scaling is linear in time, and therefore in cost. This translates
to less then five hours of calculations, or $64.00 for a realistic
collection of one million terms. Considering the benefit of
visualizing the underlying clustering structure, and the time it
would take to calculate the same map on a desktop, the cloud
HPC alternative seems very attractive.

V. FUTURE WORK

Traditional clusters are not the only option for accelerating
workloads. GPU-based instances can also be launched in
the cloud, and GPU-aware MapReduce frameworks are also
becoming available. We intend to explore two of these (see
Table II for a high-level comparison).

Mars was the first attempt to program a GPU with the
MapReduce paradigm [6]. While it did show good potential
compared to a CPU-based MapReduce, it does not utilize the
GPU efficiently. It has not been updated for a long time and
it is not capable of using more than one GPU.

While outdated and somewhat inefficient, it does show
an important difficulty of GPU-based text processing: GPUs

prefer keys of a fixed size, and tokens in a text stream
never come in a fixed size. To overcome this problem, Mars
employed a hash function and provides and example of a word
counting job.

Inspired by Mars, GPMR is the latest attempt to harness
the power of GPUs with MapReduce [18]. It can use any
number of GPUs in a node and it is also capable of running
in a distributed syste. Both features are provided by MPI. The
performance efficiency declines after about 16 GPUs.

GPMR has a fair amount of potential, however, it has its
own difficulties. The code base is developed by one person,
and documentation is sparse. It is hard to set it up on a
computer. Once the principles are understood, developing new
MapReduce jobs is not too complicated. GPMR allows direct
access to the GPUs, even if it violates MapReduce principles.
Hence it is a mixed MapReduce framework, with a strong
emphasis on computational performance.

The problems with text processing are even more apparent
than in Mars. This will be a limiting factor when developing
text and data mining applications for digital libraries.

VI. CONCLUSION

Digital libraries are not the typical target for HPC appli-
cations. We believe that this primarily because the infrastruc-
ture of digital libraries is not designed for compute-intense,
throughput-oriented tasks, and not because HPC cannot be
useful for providing advanced services to the users.

We gave an example how a visual data mining method, self-
organizing maps, can be accelerated using a small cluster in
the cloud. We used a MapReduce framework for deploying
self-organizing maps. This is particularly important because
MapReduce jobs are fairly easy to develop, a wide range
of machine learning algorithms has already been adapted to
this paradigm, hence developers of digital libraries will find it
convenient to build novel, computationally demanding services
for the end-users.
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