University of Borås

Borås Academic Digital Archive (BADA) >
Forskningspublikationer / Research Publications >
Institutionen Ingenjörshögskolan / School of Engineering (IH) >
Doktorsavhandlingar / Doctoral theses (IH) >

Please use this identifier to cite or link to this item: http://hdl.handle.net/2320/8194

Files in This Item:

File Description SizeFormat
Azadehspikblad.pdf186.5 kBAdobe PDFView/Open
Title: Melt Spun Electro-Conductive Polymer Composite Fibers
Authors: Soroudi, Azadeh
Department: University of Borås. School of Engineering
Issue Date: 2011
Series/Report no.: Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie;3211
Skrifter från Högskolan i Borås;31
Publisher: Chalmers University of Technology
Media type: text
Publication type: doctoral thesis
Keywords: conductive fibres
composites
blending
melt spinning
morphology
polyaniline
carbon nanotube
polypropylene
polyamide
draw-ratio
conductivity
Subject Category: Subject categories::Natural Sciences::Other Basic Medicine::Organic Chemistry::Polymer Chemistry
Subject categories::Engineering and Technology::Materials Engineering
Area of Research: IH Energi och material
Strategic Research Area: none
Abstract: One interesting approach is the development of conductive polymer composite fibers for innovative textile applications such as in sensors, actuators and electrostatic discharge. In this study, conductive polymer composite fibers were prepared using several different blends containing conductive components: a conjugated polymer (polyaniline-complex) and/or carbon nanotubes. Different factors such as processing parameters, the morphology of the initial blends and the final fibers, fiber draw ratio and material selection were studied separately to characterize their effects on the fiber properties. In binary blends of PP/polyaniline-complex, the processing conditions, the matrix viscosity and the fiber draw ratio had substantial effects on the electrical conductivity of the fibers and linearity of resistance-voltage dependence. These factors were associated with each other to create conductive pathways through maintaining an appropriate balance of fibril formation and breakage along the fiber. The blend morphology was defined as the initial size of the dispersed conductive phase (polyaniline-phase), which depended on the melt blending conditions as well as the PP matrix viscosity. Depending on the initial droplet phase size, an optimum draw ratio was necessary to obtain maximum conductivity by promoting fibril formation (sufficient stress) and preventing fibril breakage (no excess stress) to create continuous pathways of conductive phase. Ternary blend fibers of PP/PA6/polyaniline-complex illustrated at least three-phase morphology with matrix/core-shell dispersed phase style. When ternary fibers were compared to binary fibers, the former could combine better mechanical and electrical properties only at a specific draw ratio; this showed that draw ratio was a more determinant factor for the ternary fibers, as both conductivity and tensile strength depended on the formation of fibrils from the core-shell droplets of the PA6/polyaniline-complex through the polypropylene matrix. The achieved maximum conductivity so far was in the range of 10 S/cm to 10 S/cm, which for different samples were observed at different fiber draw ratios depending on the mixing conditions, the matrix viscosity or whether the fiber was a binary or ternary blend. To improve the properties, PP/polyaniline-complex blends were filled with CNTs. The CNTs and the polyaniline-complex both had an increasing effect on the crystallization temperature and the thermal stability of PP. Furthermore, the maximum conductivity was observed in samples containing both CNTs and polyaniline-complex rather than the PP with either one of the fillers. Although increasing the content of CNTs improved the conductivity in PP/CNT fibers, the ease of melt spinning, diameter uniformity and mechanical properties of fibers were adversely affected. Diameter variation of PP/CNT as-spun fibers was shown to be an indication of hidden melt-drawings that had occurred during the fiber extrusion; this could lead to variations in morphology such as increases in the insulating microcracks and the distance between the conductive agglomerates in the drawn parts of the fiber. Variations in morphology result in variations in the electrical conductivity; consequently, the conductivity of such inhomogeneous fiber is no longer its physical property, as this varies with varying size.
Description: Thesis to be defended in public on Friday, May 20, 2011 at 10.00 at KC-salen, Kemigården 4, Göteborg, for the degree of Doctor of Philosophy.
URI: http://hdl.handle.net/2320/8194
ISBN: 978-91-7385-530-3
ISSN: 0346-718X
0280-381X
Appears in Collections:Doktorsavhandlingar / Doctoral theses (IH)
Skrifter från Högskolan i Borås

SFX Query

All items in Borås Academic Digital Archive are protected by copyright, with all rights reserved.

 

DSpace Software Copyright © 2002-2010  The DSpace Foundation